If it's not what You are looking for type in the equation solver your own equation and let us solve it.
f^2+4f=0
a = 1; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·1·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*1}=\frac{-8}{2} =-4 $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*1}=\frac{0}{2} =0 $
| 0.8/x=1.5 | | 9x+4=476 | | -3(8a+3)+a=3a-5(a+6) | | 9x=6+12 | | (1(1/2))(x)=8 | | 5^(6x+10)=1/25 | | .5x+16=32 | | -5u-9=-5(5u+9) | | 6^(2x-1)=216^(3x) | | 6^2x-1=216^3x | | 6^2x-1=216^3 | | Y=0.16x+6 | | 1/4(12x+8)=12x-2-9x | | 6r+6(1-7r)=6(-2r-3) | | 65x-195=780 | | 2y-7=y-10 | | 24x+144=1128 | | 3y+9y–24=6y–4-8 | | 61x+427=1830 | | -2(d=3)=-15 | | -2(d=3)=15 | | 3.42r=7.68 | | -n/6-3=6 | | 3.42-r=7.68 | | 21x+189=903 | | s/7=-5 | | 2=1.024t | | 2x/34=90 | | -10+2n=6(n-1) | | 3y+33=1y+50 | | 8x–6=26 | | 4x-2=1x+20 |